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1 Local Well-Posedness of the Initial Value Problem for Variable-
Coefficient Wave Equations

1.1 Recap: setting and statement of the estimate
We have been looking at linear hyperbolic PDEs P¢ = f, where
Pp = 0u(g""0,0) + V0,0 + co.

We want to solve the initial value problem

Po=f
(¢, Ord)|t=0 = (g, h).
To discuss existence and uniqueness, we made further assumptions on the coefficients:

o g is a symmetric (1 + d) x (1 + d) matrix with signature (—,+,+,...,+).
o ¢%(t,z) =0 and ¢*O(t,x) = —1.
e Tor ¢ € RY, ghkeg,&; > M|€]? (bottom right d x d minor is positive definite).

e ¢"Y b, c are uniformly bounded, with uniformly bounded derivatives.
Example 1.1. Set b= ¢ =0, and let g = diag(—1,1,1,...,1). Then P =[.

We take the convention that 2% = ¢. We also use Greek indices u,v € {0,1,...,d} and
indices j,k € {1,...,d}. Last time, we were proving the following theorem.
Theorem 1.1 (Local well-posedness of the initial value problem). Let s € Z4. Given
(g,h) € Ht x H3(RY) and f € L}([0,t]; H*(R?)), there exists a unique solution ¢ to the
initial value problem with ¢ € Cy([0,T], H**1) and 0¢ € Cy((0,T); H*). Moreover, the
unique solution ¢ satisfies the estimate

1Dllceqorims+ry + 10l eyorymsy Sguwvpmers (g M msetscrs + 1 Fll i qgo.y;mr)-

Remark 1.1. Local well-posedness entails continuous dependence of ¢ on (f,g,h). Be-
cause of linearity, this a priori estimate implies continuous dependence (and in fact Lipschitz
dependence).



1.2 Proof of the a priori estimate

Let’s finish the proof. Recall that the idea of the proof is to use the a priori estimate, along
with a functional analytic lemma.

Proposition 1.1. Let s € Z. Let ¢ € Cy([0,T); H**Y) and 0,¢ € Cy([0,T); H*). Then

(0, 0ed)le=oll rs+1 s + 1P| L1 (0,771

9llc, o,y m5+1) + 110Dl ey ((0,0):15) S |

Proof. (s > 0): We want to use the energy method. The natural strategy would be to
commute P¢ with D® for |a| < s and apply the energy estimate (multiply by 0,¢ and
integrate by parts). Instead, we vary the multiplier:

(Po, (1 — AP 0,6) = / Po(1 — Ay 8,6 da

e On one hand, we know by duality that

T
| Po. (1= 27010 dt S 1POly o ayaan |0 o

This is basically integrating by parts s times and using Cauchy-Schwarz. We can also
think of this as the general bound

[F S A s llgll -

In general, if @ is an order r differential operator with that have uniformly bounded
derivatives to all order, then (with some Fourier analysis), we can say that

1Qqllers < llgllgr+s (s € R).

For negative s, we get the inequality by duality:

1Qflzs = sup Q. 9)|

lgllms=1

= sup ||(f,Q"g)

lgllzrs=1
S 1A+ 1Q7 gll s

We also have the fact that

(1 = A%)gllz2 = llgllzzs, (1 = A)*g,9) =~ |lgll7,

which we get by using the Fourier transform:

(1= A)g,9) = ((1+6*)*3.9) = 11+ &*)*/*31I7.



e On the other hand, we have
Pp= 0u(g""0,0) +0"'0,¢+ co.
—_—
—02¢+0;(g7 %0y ¢)
Now we can observe that
(=070, (1 = A1) = —0,(016, (1 — A)° D) + (0sh, (1 — A)°8F 9)
Since (9, (1 — A)%02¢) = (1 — A)*0y, 02 ¢), we get
1
= —§3t<3t¢a (1—-A)°00)

For the other term, we have

(05 (9" 00), (1 = A)*0pg) = —(g"* o, (1 — A)*8,9;9)
=~ (g e, (1 = 8)°9;, )
+ (09" O, (1 — A)°0;, ¢)
+ (g OkB10, (1 — A)°8;9).

Write the last term as

—(16, O (9" (1-1)°0;0)) = —(BepO([97", (1-1)*]0;9)) —(916, O (1 — A)*(¢7";9)) -

=—((1—-A)°0:¢,01(97*0;6)

Overall, this equals
1 - 1 < 1 .
SO Ohd, (1= D) 0;0)+ 5 (Dug™ 046, (1-A)°;6)— 5 (016, 0kl [g7*, (1-A)°]059)).

The point is of this messy calculation is as follows: for the terms with the highest
number of derivatives, we want to put things in to this total derivative form. The
other terms will have at least 1 derivative that is not falling on ¢. This is the purpose
of using the commutator. What we get is that

(P, (1 — A)*Dy)
N _%at(@tcb, (1= A)°08) + (9" O, (1 — 8)°0;9))

Es[o](t)
+0((0109,0%0¢)) + O((g20¢, 0%~ 0¢)) + - - + O({q25+10¢, 09)),
R,

where ¢1 = 9g, b, g2 = 9?g0bc, etc.



So our energy argument says

t t
[ Po.( = ayag)ar > B0 - Bel) = C [ 6l + ool d.
where we are just using the estimate for the remainder:

[Rs(t') S (9]l 1 + 106 1<)

Now we have

t
Es[9](t) < Es[¢1(0) + 1Pl 1 o175 19: Ml 0,7y:) +/0 1611 Z7es1 + 106l dt”

Note that Eg[¢](t) ~ [|¢]|3;c1 + |0:@]l7;=, so our proprties of H® and the elliptic estimate
for 0; g%y, gives:

t
Es[o(t) < Es[0](0) + 1Pl Ly (jo.17:1) 1969l 0,109 +/0 Eslo(t') dt!
So Gronwall’s inequality tells us that

E[®](t) S Es[01(0) + 1Pl Ly ory.0) e E,[¢](2).

Now we can take the sup over t € [0, 7] on the left hand side and use the AM-GM inequality
with an epsilon to absorb the sup,c(o 77 Es[¢](t) on the right into the left hand side.

(s < 0): Let ® = (1 — A)~lsl¢. We have the equivalence

1@l grist+r = (|Gl 1ot +1 = [| @l rss1-

Similarly,
10e® || 151 = |0 15

Now, we do the same argument with s replaced by |s| and ¢ replaced by ®. The only thing
that is different is part 1 above. So we need to estimate
(P2, (1 A)*19,®)[ = [(1 - A)*1P®,0,9)]
= (P (1 - 2)"2,8,0)| + [([(1 - A)F], P&, 5,®)|
—_——

¢
The right term has order 2|s| + 2 — 1. Using duality,

S 1Pl s 10:® | 1t [| @] risi+1 106 @l st -

This completes the proof. ]



1.3 Proof of well-posedness from the a priori estimate

Now we can quickly conclude the proof existence and uniqueness theorem.

Proof. Note that uniqueness and the a priori estimate follow from the proposition. It
remains to prove existence.

Step 1: First, view this as trying to find the inverse of the operator P : L°([0, T, H*T!) —
Li([0,T); H*). We want to reduce to the case when the initial data g, h = 0; we may
achieve this using extension and modifying f.

Step 2: By duality, ¢ € L([0, T); H5T1) = (LE([0,T]); H—*71))*. We want

/OT<f,w> it = /OT<P¢, o) dt

T
/0 (¢, P*) dt.

Define ¢ : P*(L}([0,T]; H=*)) — R by £(P*y) = f0T<f,1/1> dt. This is well-defined by

our a-priori estimate:

el < N[ f e syl oo (r—sy < W Lo sy 1P* | L r—s-1y.-

By Hahn-Banach, there exists an extension ¢* € (L} (H~*71))* which is an extension
with the bound [|€*[| < || f |z sy Here, ¢ = £ € L& (HSTY).

Step 3: Upgrade ¢ € L¥°(H*) to ¢ € Ci(H**1) with 0 € Ci(H®). The way to
do this is to approximate by smooth objects and try to take the limit. The a priori
estimate will stay intact through the limit. O
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