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1 Local Well-Posedness of the Initial Value Problem for Variable-
Coefficient Wave Equations

1.1 Recap: setting and statement of the estimate

We have been looking at linear hyperbolic PDEs Pφ = f , where

Pφ = ∂µ(gµ,ν∂νφ) + bµ∂µφ+ cφ.

We want to solve the initial value problem{
Pφ = f

(φ, ∂tφ)|t=0 = (g, h).

To discuss existence and uniqueness, we made further assumptions on the coefficients:

• gµ,ν is a symmetric (1 + d)× (1 + d) matrix with signature (−,+,+, . . . ,+).

• g0,j(t, x) = 0 and g0,0(t, x) = −1.

• For ξ ∈ Rd, gj,kξjξk ≥ λ|ξ|2 (bottom right d× d minor is positive definite).

• gµ,ν , b, c are uniformly bounded, with uniformly bounded derivatives.

Example 1.1. Set b = c = 0, and let g = diag(−1, 1, 1, . . . , 1). Then P = �.

We take the convention that x0 = t. We also use Greek indices µ, ν ∈ {0, 1, . . . , d} and
indices j, k ∈ {1, . . . , d}. Last time, we were proving the following theorem.

Theorem 1.1 (Local well-posedness of the initial value problem). Let s ∈ Z+. Given
(g, h) ∈ Hs+1 ×Hs(Rd) and f ∈ L1

t ([0, t];H
s(Rd)), there exists a unique solution φ to the

initial value problem with φ ∈ Ct([0, T ], Hs+1) and ∂φ ∈ Ct((0, T );Hs). Moreover, the
unique solution φ satisfies the estimate

‖φ‖Ct([0,T ];Hs+1) + ‖∂tφ‖Ct([0,T ];Hs) .gµ,ν ,bµ,c,T,s ‖(g, h)‖Hs+1×Hs + ‖f‖L1
t ([0,T ];Hs).

Remark 1.1. Local well-posedness entails continuous dependence of φ on (f, g, h). Be-
cause of linearity, this a priori estimate implies continuous dependence (and in fact Lipschitz
dependence).
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1.2 Proof of the a priori estimate

Let’s finish the proof. Recall that the idea of the proof is to use the a priori estimate, along
with a functional analytic lemma.

Proposition 1.1. Let s ∈ Z. Let φ ∈ Ct([0, T ];Hs+1) and ∂tφ ∈ Ct([0, T ];Hs). Then

‖φ‖Ct([0,T ];Hs+1) + ‖∂tφ‖Ct((0,t):Hs) . ‖(φ, ∂tφ)|t=0‖Hs+1×Hs + ‖Pφ‖L1
t ([0,T ];Hs).

Proof. (s ≥ 0): We want to use the energy method. The natural strategy would be to
commute Pφ with Dα for |α| ≤ s and apply the energy estimate (multiply by ∂tφ and
integrate by parts). Instead, we vary the multiplier:

〈Pφ, (1−∆)s∂tφ〉 :=

∫
Pφ(1−∆)s∂tφdx

• On one hand, we know by duality that∫ T

0
〈Pφ, (1−∆)s∂tφ〉 dt . ‖Pφ‖L1

t ([0,T ];Hs)‖∂tφ‖Ct([0,T ];Hs).

This is basically integrating by parts s times and using Cauchy-Schwarz. We can also
think of this as the general bound

|〈f, g〉| . ‖f‖Hs‖g‖H−s

In general, if Q is an order r differential operator with that have uniformly bounded
derivatives to all order, then (with some Fourier analysis), we can say that

‖Qg‖Hs . ‖g‖Hr+s (s ∈ R).

For negative s, we get the inequality by duality:

‖Qf‖Hs = sup
‖g‖Hs=1

||〈Qf, g〉|

= sup
‖g‖Hs=1

||〈f,Q∗g〉|

. ‖f‖Hs+r‖Q∗g‖Hs−r .

We also have the fact that

‖(1−∆s)g‖L2 ' ‖g‖H2s , 〈(1−∆)sg, g〉 ' ‖g‖2Hs ,

which we get by using the Fourier transform:

〈(1−∆)sg, g〉 = 〈(1 + |ξ|2)s, ĝ, ĝ〉 = ‖(1 + ξ|2)s/2ĝ‖2L2
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• On the other hand, we have

Pφ = ∂µ(gµ,ν∂νφ)︸ ︷︷ ︸
−∂2t φ+∂j(gj,k∂kφ)

+bµ∂µφ+ cφ.

Now we can observe that

〈−∂2
t φ, (1−∆)s∂tφ〉 = −∂t〈∂tφ, (1−∆)s∂tφ〉+ 〈∂tφ, (1−∆)s∂2

t φ〉
Since 〈∂tφ, (1−∆)s∂2

t φ〉 = 〈(1−∆)s∂tφ, ∂
2
t φ〉, we get

= −1

2
∂t〈∂tφ, (1−∆)s∂tφ〉

For the other term, we have

〈∂j(gj,k∂kφ), (1−∆)s∂tφ〉 = −〈gj,k∂kφ, (1−∆)s∂t∂jφ〉
= −∂t〈gj,k∂kφ, (1−∆)s∂j , φ〉

+ 〈∂tgj,k∂kφ, (1−∆)s∂j , φ〉
+ 〈gj,k∂k∂tφ, (1−∆)s∂jφ〉.

Write the last term as

−〈tφ, ∂k(gj,k(1−∆)s∂jφ)〉 = −〈∂tφ∂k([gj,k, (1−∆)s]∂jφ)〉−〈∂tφ, ∂k(1−∆)s(gj,k∂jφ)〉︸ ︷︷ ︸
=−〈(1−∆)s∂tφ,∂k(gj,k∂jφ〉

.

Overall, this equals

−1

2
∂t〈gj,k∂kφ, (1−∆)s∂jφ〉+

1

2
〈∂tgj,k∂kφ, (1−∆)s∂jφ〉−

1

2
〈∂tφ, ∂k([gj,k, (1−∆)s]∂jφ)〉.

The point is of this messy calculation is as follows: for the terms with the highest
number of derivatives, we want to put things in to this total derivative form. The
other terms will have at least 1 derivative that is not falling on φ. This is the purpose
of using the commutator. What we get is that

〈Pφ, (1−∆)s∂tφ〉

= −1

2
∂t(〈∂tφ, (1−∆)s∂tφ〉+ 〈gj,k∂kφ, (1−∆)s∂jφ〉)︸ ︷︷ ︸

Es[φ](t)

+O(〈q1∂φ, ∂
2s∂φ〉) +O(〈q2∂φ, ∂

2s−1∂φ〉) + · · ·+O(〈q2s+1∂φ, ∂φ〉)︸ ︷︷ ︸
Rs

,

where q1 = ∂g, b, q2 = ∂2g∂bc, etc.
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So our energy argument says∫ t

0
〈Pφ, (1−∆)s∂tφ〉 dt′ ≥ Es[φ](0)− Es[φ](t)− C

∫ t

0
‖φ‖2Hs+1 + ‖∂tφ‖2Hs dt′,

where we are just using the estimate for the remainder:

|Rs(t′) . (‖φ‖Hs+1 + ‖∂tφ‖Hs)2.

Now we have

Es[φ](t) ≤ Es[φ](0) + ‖Pφ‖L1
t ([0,T ];Hs‖∂tφ‖Ct((0,T );Hs) +

∫ t

0
‖φ‖2Hs+1 + ‖∂tφ‖2Hs dt′.

Note that Es[φ](t) ' ‖φ‖2Hs+1 + ‖∂tφ‖2Hs , so our proprties of Hs and the elliptic estimate
for ∂jg

j,k∂k gives:

Es[φ(t) ≤ Es[φ](0) + ‖Pφ‖L1
t ([0,T ];Hs)‖∂tφ‖Ct((0,T );Hs) +

∫ t

0
Es[φ(t′) dt′

So Grönwall’s inequality tells us that

Es[Φ](t) . Es[φ](0) + ‖Pφ‖L1
t ([0,T ];Hs) sup

t∈[0,T ]
Es[φ](t).

Now we can take the sup over t ∈ [0, T ] on the left hand side and use the AM-GM inequality
with an epsilon to absorb the supt∈[0,T ]Es[φ](t) on the right into the left hand side.

(s < 0): Let Φ = (1−∆)−|s|φ. We have the equivalence

‖Φ‖H|s|+1 ' ‖φ‖H−|s|+1 = ‖φ‖Hs+1 .

Similarly,
‖∂tΦ‖H|s| ' |∂t‖Hs .

Now, we do the same argument with s replaced by |s| and φ replaced by Φ. The only thing
that is different is part 1 above. So we need to estimate

|〈PΦ, (1−∆)|s|∂tΦ〉| = |〈(1−∆)|s|PΦ, ∂tΦ〉|
= |〈P (1−∆)|s|Φ︸ ︷︷ ︸

φ

, ∂tΦ〉|+ |〈[(1−∆)|s|, P ]Φ, ∂tΦ〉|

The right term has order 2|s|+ 2− 1. Using duality,

. ‖Pφ‖Hs‖∂tΦ‖H|s|‖Φ‖H|s|+1‖∂tΦ‖H|s| .

This completes the proof.
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1.3 Proof of well-posedness from the a priori estimate

Now we can quickly conclude the proof existence and uniqueness theorem.

Proof. Note that uniqueness and the a priori estimate follow from the proposition. It
remains to prove existence.

Step 1: First, view this as trying to find the inverse of the operator P : L∞t ([0, T ],Hs+1)→
L1
t ([0, T ];Hs). We want to reduce to the case when the initial data g, h = 0; we may

achieve this using extension and modifying f .

Step 2: By duality, φ ∈ L∞t ([0, T ];Hs+1) = (L1
t ([0, T ];H−s−1))∗. We want∫ T

0
〈f, ψ〉 dt =

∫ T

0
〈Pφ, ψ〉 dt

=

∫ T

0
〈φ, P ∗ψ〉 dt.

Define ` : P ∗(L1
t ([0, T ];H−s))→ R by `(P ∗ψ) =

∫ T
0 〈f, ψ〉 dt. This is well-defined by

our a-priori estimate:

‖`‖ ≤ ‖f‖L1(Hs)‖ψ‖L∞(H−s) ≤ ‖f‖L1(Hs)‖P ∗ψ‖L1(H−s−1).

By Hahn-Banach, there exists an extension `∗ ∈ (L1
t (H

−s−1))∗ which is an extension
with the bound ‖`∗‖ . ‖f‖L1(Hs). Here, φ = `∗ ∈ L∞t (Hs+1).

Step 3: Upgrade φ ∈ L∞t (Hs+1) to φ ∈ Ct(Hs+1) with ∂tφ ∈ Ct(Hs). The way to
do this is to approximate by smooth objects and try to take the limit. The a priori
estimate will stay intact through the limit.
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