Mathematics 222B Lecture 17 Notes

Daniel Raban

March 29, 2022

1 Local Well-Posedness of the Initial Value Problem for VariableCoefficient Wave Equations

1.1 Recap: setting and statement of the estimate

We have been looking at linear hyperbolic PDEs $P \phi=f$, where

$$
P \phi=\partial_{\mu}\left(g^{\mu, \nu} \partial_{\nu} \phi\right)+b^{\mu} \partial_{\mu} \phi+c \phi .
$$

We want to solve the initial value problem

$$
\left\{\begin{array}{l}
P \phi=f \\
\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=(g, h) .
\end{array}\right.
$$

To discuss existence and uniqueness, we made further assumptions on the coefficients:

- $g^{\mu, \nu}$ is a symmetric $(1+d) \times(1+d)$ matrix with signature $(-,+,+, \ldots,+)$.
- $g^{0, j}(t, x)=0$ and $g^{0,0}(t, x)=-1$.
- For $\xi \in \mathbb{R}^{d}, g^{j, k} \xi_{j} \xi_{k} \geq \lambda|\xi|^{2}$ (bottom right $d \times d$ minor is positive definite).
- $g^{\mu, \nu}, b, c$ are uniformly bounded, with uniformly bounded derivatives.

Example 1.1. Set $b=c=0$, and let $g=\operatorname{diag}(-1,1,1, \ldots, 1)$. Then $P=\square$.
We take the convention that $x^{0}=t$. We also use Greek indices $\mu, \nu \in\{0,1, \ldots, d\}$ and indices $j, k \in\{1, \ldots, d\}$. Last time, we were proving the following theorem.
Theorem 1.1 (Local well-posedness of the initial value problem). Let $s \in \mathbb{Z}_{+}$. Given $(g, h) \in H^{s+1} \times H^{s}\left(\mathbb{R}^{d}\right)$ and $f \in L_{t}^{1}\left([0, t] ; H^{s}\left(\mathbb{R}^{d}\right)\right)$, there exists a unique solution ϕ to the initial value problem with $\phi \in C_{t}\left([0, T], H^{s+1}\right)$ and $\partial \phi \in C_{t}\left((0, T) ; H^{s}\right)$. Moreover, the unique solution ϕ satisfies the estimate

$$
\|\phi\|_{C_{t}\left([0, T] ; H^{s+1}\right)}+\left\|\partial_{t} \phi\right\|_{C_{t}\left[[0, T] ; H^{s}\right)} \lesssim_{g^{\mu, \nu}, b^{\mu}, c, T, s}\|(g, h)\|_{H^{s+1} \times H^{s}}+\|f\|_{L_{t}^{1}\left([0, T] ; H^{s}\right)}
$$

Remark 1.1. Local well-posedness entails continuous dependence of ϕ on (f, g, h). Because of linearity, this a priori estimate implies continuous dependence (and in fact Lipschitz dependence).

1.2 Proof of the a priori estimate

Let's finish the proof. Recall that the idea of the proof is to use the a priori estimate, along with a functional analytic lemma.

Proposition 1.1. Let $s \in \mathbb{Z}$. Let $\phi \in C_{t}\left([0, T] ; H^{s+1}\right)$ and $\partial_{t} \phi \in C_{t}\left([0, T] ; H^{s}\right)$. Then

$$
\|\phi\|_{C_{t}\left([0, T] ; H^{s+1}\right)}+\left\|\partial_{t} \phi\right\|_{C_{t}\left((0, t): H^{s}\right)} \lesssim\left\|\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}\right\|_{H^{s+1} \times H^{s}}+\|P \phi\|_{L_{t}^{1}\left([0, T] ; H^{s}\right)}
$$

Proof. $(s \geq 0)$: We want to use the energy method. The natural strategy would be to commute $P \phi$ with D^{α} for $|\alpha| \leq s$ and apply the energy estimate (multiply by $\partial_{t} \phi$ and integrate by parts). Instead, we vary the multiplier:

$$
\left\langle P \phi,(1-\Delta)^{s} \partial_{t} \phi\right\rangle:=\int P \phi(1-\Delta)^{s} \partial_{t} \phi d x
$$

- On one hand, we know by duality that

$$
\int_{0}^{T}\left\langle P \phi,(1-\Delta)^{s} \partial_{t} \phi\right\rangle d t \lesssim\|P \phi\|_{L_{t}^{1}\left([0, T] ; H^{s}\right)}\left\|\partial_{t} \phi\right\|_{C_{t}\left([0, T] ; H^{s}\right)} .
$$

This is basically integrating by parts s times and using Cauchy-Schwarz. We can also think of this as the general bound

$$
|\langle f, g\rangle| \lesssim\|f\|_{H^{s}}\|g\|_{H^{-s}}
$$

In general, if Q is an order r differential operator with that have uniformly bounded derivatives to all order, then (with some Fourier analysis), we can say that

$$
\|Q g\|_{H^{s}} \lesssim\|g\|_{H^{r+s}} \quad(s \in \mathbb{R}) .
$$

For negative s, we get the inequality by duality:

$$
\begin{aligned}
\|Q f\|_{H^{s}} & =\sup _{\|g\|_{H^{s}=1}} \|\langle Q f, g\rangle \mid \\
& =\sup _{\|g\|_{H^{s}=1}} \|\left\langle f, Q^{*} g\right\rangle \mid \\
& \lesssim\|f\|_{H^{s+r}}\left\|Q^{*} g\right\|_{H^{s-r}}
\end{aligned}
$$

We also have the fact that

$$
\left\|\left(1-\Delta^{s}\right) g\right\|_{L^{2}} \simeq\|g\|_{H^{2 s}},\left\langle(1-\Delta)^{s} g, g\right\rangle \simeq\|g\|_{H^{s}}^{2}
$$

which we get by using the Fourier transform:

$$
\left\langle(1-\Delta)^{s} g, g\right\rangle=\left\langle\left(1+|\xi|^{2}\right)^{s}, \widehat{g}, \widehat{g}\right\rangle=\left\|\left(1+\left.\xi\right|^{2}\right)^{s / 2} \widehat{g}\right\|_{L^{2}}^{2}
$$

- On the other hand, we have

$$
P \phi=\underbrace{\partial_{\mu}\left(g^{\mu, \nu} \partial_{\nu} \phi\right)}_{-\partial_{t}^{2} \phi+\partial_{j}\left(g^{j, k} \partial_{k} \phi\right)}+b^{\mu} \partial_{\mu} \phi+c \phi
$$

Now we can observe that

$$
\left\langle-\partial_{t}^{2} \phi,(1-\Delta)^{s} \partial_{t} \phi\right\rangle=-\partial_{t}\left\langle\partial_{t} \phi,(1-\Delta)^{s} \partial_{t} \phi\right\rangle+\left\langle\partial_{t} \phi,(1-\Delta)^{s} \partial_{t}^{2} \phi\right\rangle
$$

Since $\left\langle\partial_{t} \phi,(1-\Delta)^{s} \partial_{t}^{2} \phi\right\rangle=\left\langle(1-\Delta)^{s} \partial_{t} \phi, \partial_{t}^{2} \phi\right\rangle$, we get

$$
=-\frac{1}{2} \partial_{t}\left\langle\partial_{t} \phi,(1-\Delta)^{s} \partial_{t} \phi\right\rangle
$$

For the other term, we have

$$
\begin{aligned}
\left\langle\partial_{j}\left(g^{j, k} \partial_{k} \phi\right),(1-\Delta)^{s} \partial_{t} \phi\right\rangle= & -\left\langle g^{j, k} \partial_{k} \phi,(1-\Delta)^{s} \partial_{t} \partial_{j} \phi\right\rangle \\
= & -\partial_{t}\left\langle g^{j, k} \partial_{k} \phi,(1-\Delta)^{s} \partial_{j}, \phi\right\rangle \\
& +\left\langle\partial_{t} g^{j, k} \partial_{k} \phi,(1-\Delta)^{s} \partial_{j}, \phi\right\rangle \\
& +\left\langle g^{j, k} \partial_{k} \partial_{t} \phi,(1-\Delta)^{s} \partial_{j} \phi\right\rangle .
\end{aligned}
$$

Write the last term as

$$
-\left\langle_{t} \phi, \partial_{k}\left(g^{j, k}(1-\Delta)^{s} \partial_{j} \phi\right)\right\rangle=-\left\langle\partial_{t} \phi \partial_{k}\left(\left[g^{j, k},(1-\Delta)^{s}\right] \partial_{j} \phi\right)\right\rangle \underbrace{-\left\langle\partial_{t} \phi, \partial_{k}(1-\Delta)^{s}\left(g^{j, k} \partial_{j} \phi\right)\right\rangle}_{=-\left\langle(1-\Delta)^{s} \partial_{t} \phi, \partial_{k}\left(g^{j, k} \partial_{j} \phi\right\rangle\right.} .
$$

Overall, this equals

$$
-\frac{1}{2} \partial_{t}\left\langle g^{j, k} \partial_{k} \phi,(1-\Delta)^{s} \partial_{j} \phi\right\rangle+\frac{1}{2}\left\langle\partial_{t} g^{j, k} \partial_{k} \phi,(1-\Delta)^{s} \partial_{j} \phi\right\rangle-\frac{1}{2}\left\langle\partial_{t} \phi, \partial_{k}\left(\left[g^{j, k},(1-\Delta)^{s}\right] \partial_{j} \phi\right)\right\rangle
$$

The point is of this messy calculation is as follows: for the terms with the highest number of derivatives, we want to put things in to this total derivative form. The other terms will have at least 1 derivative that is not falling on ϕ. This is the purpose of using the commutator. What we get is that

$$
\begin{aligned}
\langle P \phi, & \left.(1-\Delta)^{s} \partial_{t} \phi\right\rangle \\
& =\underbrace{-\frac{1}{2} \partial_{t}\left(\left\langle\partial_{t} \phi,(1-\Delta)^{s} \partial_{t} \phi\right\rangle+\left\langle g^{j, k} \partial_{k} \phi,(1-\Delta)^{s} \partial_{j} \phi\right\rangle\right)}_{E_{s}[\phi](t)} \\
& +\underbrace{O\left(\left\langle q_{1} \partial \phi, \partial^{2 s} \partial \phi\right\rangle\right)+O\left(\left\langle q_{2} \partial \phi, \partial^{2 s-1} \partial \phi\right\rangle\right)+\cdots+O\left(\left\langle q_{2 s+1} \partial \phi, \partial \phi\right\rangle\right)}_{R_{s}},
\end{aligned}
$$

where $q_{1}=\partial g, b, q_{2}=\partial^{2} g \partial b c$, etc.

So our energy argument says

$$
\int_{0}^{t}\left\langle P \phi,(1-\Delta)^{s} \partial_{t} \phi\right\rangle d t^{\prime} \geq E_{s}[\phi](0)-E_{s}[\phi](t)-C \int_{0}^{t}\|\phi\|_{H^{s+1}}^{2}+\left\|\partial_{t} \phi\right\|_{H^{s}}^{2} d t^{\prime}
$$

where we are just using the estimate for the remainder:

$$
\mid R_{s}\left(t^{\prime}\right) \lesssim\left(\|\phi\|_{H^{s+1}}+\left\|\partial_{t} \phi\right\|_{H^{s}}\right)^{2} .
$$

Now we have

$$
E_{s}[\phi](t) \leq E_{s}[\phi](0)+\|P \phi\|_{L_{t}^{1}\left([0, T] ; H^{s}\right.}\left\|\partial_{t} \phi\right\|_{C_{t}\left((0, T) ; H^{s}\right)}+\int_{0}^{t}\|\phi\|_{H^{s+1}}^{2}+\left\|\partial_{t} \phi\right\|_{H^{s}}^{2} d t^{\prime}
$$

Note that $E_{s}[\phi](t) \simeq\|\phi\|_{H^{s+1}}^{2}+\left\|\partial_{t} \phi\right\|_{H^{s}}^{2}$, so our proprties of H^{s} and the elliptic estimate for $\partial_{j} g^{j, k} \partial_{k}$ gives:

$$
E_{s}\left[\phi(t) \leq E_{s}[\phi](0)+\|P \phi\|_{L_{t}^{1}\left([0, T] ; H^{s}\right)}\left\|\partial_{t} \phi\right\|_{C_{t}\left((0, T) ; H^{s}\right)}+\int_{0}^{t} E_{s}\left[\phi\left(t^{\prime}\right) d t^{\prime}\right.\right.
$$

So Grönwall's inequality tells us that

$$
E_{s}[\Phi](t) \lesssim E_{s}[\phi](0)+\|P \phi\|_{L_{t}^{1}\left[[0, T] ; H^{s}\right)} \sup _{t \in[0, T]} E_{s}[\phi](t) .
$$

Now we can take the sup over $t \in[0, T]$ on the left hand side and use the AM-GM inequality with an epsilon to absorb the $\sup _{t \in[0, T]} E_{s}[\phi](t)$ on the right into the left hand side.
$(s<0)$: Let $\Phi=(1-\Delta)^{-|s|} \phi$. We have the equivalence

$$
\|\Phi\|_{H^{|s|+1}} \simeq\|\phi\|_{H^{-|s|+1}}=\|\phi\|_{H^{s+1}} .
$$

Similarly,

$$
\left\|\partial_{t} \Phi\right\|_{H^{|s|}} \simeq \mid \partial_{t} \|_{H^{s}}
$$

Now, we do the same argument with s replaced by $|s|$ and ϕ replaced by Φ. The only thing that is different is part 1 above. So we need to estimate

$$
\begin{aligned}
\left|\left\langle P \Phi,(1-\Delta)^{|s|} \partial_{t} \Phi\right\rangle\right| & =\left|\left\langle(1-\Delta)^{|s|} P \Phi, \partial_{t} \Phi\right\rangle\right| \\
& =|\langle P \underbrace{(1-\Delta)^{|s|} \Phi}_{\phi}, \partial_{t} \Phi\rangle|+\left|\left\langle\left[(1-\Delta)^{|s|}, P\right] \Phi, \partial_{t} \Phi\right\rangle\right|
\end{aligned}
$$

The right term has order $2|s|+2-1$. Using duality,

$$
\lesssim\|P \phi\|_{H^{s}}\left\|\partial_{t} \Phi\right\|_{H^{|s|}}\|\Phi\|_{H^{|s|+1}}\left\|\partial_{t} \Phi\right\|_{H^{|s|}}
$$

This completes the proof.

1.3 Proof of well-posedness from the a priori estimate

Now we can quickly conclude the proof existence and uniqueness theorem.
Proof. Note that uniqueness and the a priori estimate follow from the proposition. It remains to prove existence.

Step 1: First, view this as trying to find the inverse of the operator $P: L_{t}^{\infty}\left([0, T], \mathcal{H}^{s+1}\right) \rightarrow$ $L_{t}^{1}\left([0, T] ; H^{s}\right)$. We want to reduce to the case when the initial data $g, h=0$; we may achieve this using extension and modifying f.

Step 2: By duality, $\phi \in L_{t}^{\infty}\left([0, T] ; H^{s+1}\right)=\left(L_{t}^{1}\left([0, T] ; H^{-s-1}\right)\right)^{*}$. We want

$$
\begin{aligned}
\int_{0}^{T}\langle f, \psi\rangle d t & =\int_{0}^{T}\langle P \phi, \psi\rangle d t \\
& =\int_{0}^{T}\left\langle\phi, P^{*} \psi\right\rangle d t
\end{aligned}
$$

Define $\ell: P^{*}\left(L_{t}^{1}\left([0, T] ; H^{-s}\right)\right) \rightarrow \mathbb{R}$ by $\ell\left(P^{*} \psi\right)=\int_{0}^{T}\langle f, \psi\rangle d t$. This is well-defined by our a-priori estimate:

$$
\|\ell\| \leq\|f\|_{L^{1}\left(H^{s}\right)}\|\psi\|_{L^{\infty}\left(H^{-s}\right)} \leq\|f\|_{L^{1}\left(H^{s}\right)}\left\|P^{*} \psi\right\|_{L^{1}\left(H^{-s-1}\right)} .
$$

By Hahn-Banach, there exists an extension $\ell^{*} \in\left(L_{t}^{1}\left(H^{-s-1}\right)\right)^{*}$ which is an extension with the bound $\left\|\ell^{*}\right\| \lesssim\|f\|_{L^{1}\left(H^{s}\right)}$. Here, $\phi=\ell^{*} \in L_{t}^{\infty}\left(H^{s+1}\right)$.
Step 3: Upgrade $\phi \in L_{t}^{\infty}\left(H^{s+1}\right)$ to $\phi \in C_{t}\left(H^{s+1}\right)$ with $\partial_{t} \phi \in C_{t}\left(H^{s}\right)$. The way to do this is to approximate by smooth objects and try to take the limit. The a priori estimate will stay intact through the limit.

